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Abstract

The last decennium a vast literature on multiple state models and stochastic models for disability
(health) insurance has been developed. In our paper, with title sickness recovery intensities for
short term health insurance in Greece, examines two methodologies for graduating sickness reco-
very intensities in a multistate model for short term health insurance. The approach is based on ge-
neralized linear models and utilizes the data collected for a Greek Social Security Institution. The
sickness recovery intensity is function of age at sickness onset, x, and duration of sickness, z. The
graduation formula that proposed for Greek experience has three break-point predictors. 

JEL Classifications: C49, G22, I12.
Keywords: Disability Insurance, Average duration of a claim, Sickness recovery intensities, Gra-

duation process.

1. Introduction 

Sickness is one of the most serious threats to people's lives causing problems in
his/her physical mental and economic situation. The economic loss is caused by a di-
sease, concerns expenses for hospital and medical care and loss of income because
of incapacity to continue to work for short or long time. To cover the risk for these
economic loses many types of disability policies have been created by insurance com-
panies and social security institutions. All these policies are under the general title
health insurance. The term health insurance means any form of insurance whose
payments is contingent on the insured incurring additional expenses because of the
above risks (Black & Skipper, pp. 134-159). Health insurance classified into three ca-
tegories, medical expenses, long term care insurance and loss of income (or disabi-
lity income insurance). Particular disability income plans are classified into long-term
and short-term according the time the insured received benefits.

A number of sources may potentially provide disability income benefits to
employees (Rosenbloom, Victor, 1991, pp. 210-211):
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1. Social security 
2. Insurance company plans
3. Employer salary continuation plan 
4. Other  plans

Employees in Greece have been cover against sickness by the social security
short term sickness policy. With the term short-term sickness benefits we mean
disability benefits provided in the case of acute cases of sickness usually lasting
no longer than same months.  For every day out of work, after a three days de-
ferred period, the employee receives a daily benefit, which may relate with em-
ployee’s salary, duties in his work and the duration of sickness. The benefit is
paid for short time usually six months. In this paper we use the term health in-
surance to describe short term disability of income policies.          

To calculate the actuarial values of benefits have proposed various appro-
aches. A first approach to the problem is well known as Manchester Unity model
(Neill A., 1977, pp. 376-383). According to this approach selected tables for the
sickness rate can by construct and actuarial values can be calculated using mo-
netary functions. The definition for the sickness rate at age x:

(1)

where,  Pij (x+t), is the probability the insured to be benefit  against loss of income
at age x+t and 1x+t the well known biometrical function which expresses the
number of members who have survived at age x+t. Essentially, this approach re-
lies on m-type estimation of benefit time. 

At CMIR (1991) the Institute of Actuaries and the Faculty of Actuaries pre-
sented a more general approach for permanent disability insurance. This appro-
ach was based on Markov and semi-Markov stochastic processes. The use of
Markov chains in life contingencies and their extensions has been proposed by se-
veral authors, for example Haberman (1999), Hoem (1969, 1988) and particular
for disability benefits the mathematics of Markov and semi-Markov chains pro-
vide a powerful modeling tool. The CMIR model can be described as a three
stage model. The stages were Health, Sick and Dead and the insured can move
from one stage to another, except the stage Dead which was absorbing. The tran-
sition probabilities can be derived from transition intensities, which assigned
from statistical data, via Kolmogorov differential equations. Based on CMIR
model many papers were presented, for example Cordeiro (1998, 2002) which
extend the model calculating the probabilities by cause of disability neither used
different tools to calculate, Habermann & Ranshaw (1991, 1995, 2006), and Plat
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(2009), Hatzopoulos (2009, 2011), Helwich (2008) works on the graduation of
the transition intensities.

In this paper, first we present a multiple state model for short-term health in-
surance. The transition intensities are defined; Kolmogorov differential equa-
tions and formulae for the basic probabilities are presented. The main result of
the paper is the graduation formula for sickness recovery intensities.  

2. The model 

The model proposed as a basis for the analysis of short-term health insurance
data in Greece can be described with as a multiple state model with three states,
Active (A), Sick (S), Other (D). On effecting his policy the policyholder enters
state A and from this state he may transfer at any future time either to state S,
become sick, or to state D, i.e. die or leave the policy or become permanent di-
sability. Once in state S the policyholder transfer back to state A, i.e. recovery.
All the probabilities in this model depend only on the policyholder’s attained age
except the recovery probability which depend on age and the duration in his cur-
rent sickness. According Haberman and Pitacco (1999, p. 86) the policy condi-
tions can be described as a vector [n1,n2,f,m,r] where: (n1,n2) denotes insured
period, f, is the deferred period, m, is the maximum time in years of annuity pay-
ment, r, is the stopping time of annuity payment.

For short term health insurance in Greece the vector is: [c,ξ–x,d,m,ξ–x], where
ξ is the retirement age. 

The model can described more formally in terms of a pair of continuous time
stochastic processes {S(x),R(x),x 0} where S(x) is the random state occupied
by the risk at time x, S(x) takes values in the state space F={A,S,D}, and R(x)
is the time spent in state S(x) up to time x since the latest transition to that state,
formally: 

R(x)=max{τ:τ t,S(t-h)=S(t), [0,r]}                                                         (2)

R(t) takes values in [0,m]. Thus, the new stochastic process is defined by the
pair of time-continuous stochastic processes {S(x), R(x)} it takes values in Fx
[0,m]. Hence, Fx [0, ]  is the new state space. 

Let us assume that {S(x), R(x),x 0} is time-continuous, time-inhomogene-
ous Markov process. This means that, at age x, all conditional probabilities con-
cerning the future of the process depends only on the values of S(x) and R(x)
and not on any other events prior to age x. If a policyholder has just fallen sick,
the probability that he will remain sick for period z takes no account of infor-
mation such as that he has experienced many periods of sickness in the past.
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Following the notation from CMIR 12 (1991) we define the probability:

(3)

Where i,j = A,S,D and x,z,t 0.

The probabilities are independent of the value of z and so

we shall denote these probabilities  respectively. We also as-

sume that and 
The following probabilities can be calculated:  

(4)

(5)                            

(6)                            

(7)                            

(8)

(9)                            

The transition intensities between the three states are denoted rx,z,σx,μx and are
defined as follows: 

(10)

(11)

(12)

Transition intensity approaches (TIA) it is assumed that the transition inten-
sities are assigned. From the intensities, via differential equations, the transition
can in principle be derived. In the actuarial practice of insurances of the person,
the intensities should be estimated from statistical data concerning recovery, di-
sability and mortality.

Within the model, it is possible to derive the following differential equations:    
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(13a)                         

(13b)

(13c)

(13d)

(13e)

All the above formulae can be regarded as Kolmogorov forward equations for the
proposed model.

Integrating the above equations (13a-e), we obtain the following formulae:  

(14)

(15)

3. Importance of the model

As we have mentioned in previous section the model we proposed can be used
to calculate actuarial values and quantities such as the average duration of a
claim. This is necessary for pricing health insurance programs and also in the ac-
tuarial valuation of Social Health Programs. The total cost of a disease can be di-
vided into direct and indirect cost.

The direct cost includes the cost of medical procedures, cost for possible ho-
spital admission, as well as pharmaceutical cost.  Greece since 2011 has begun to
create Greek methodology for Closed Consolidated Medical Bills (KEN). The
KEN constitutes an attempt to establish the Greek version of DRGs (GR-
DRGs), i.e. the introduction of prospective funding and reimbursement of health
services to the Hospitals (Polizos, 2008). Indirect costs relate to the costs incur-
red by the insured's absence from work, loss of revenue of contributions and the
concurrent increase in expenses due to subsidization of days out of work. The
results of this study are important in estimating the indirect costs. 
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It is well known (Haberman & Pitacco, 1999, pp. 11-13) that actuarial eva-
luations, which are needed to calculate premiums and mathematical reserves, in-
clude the calculation of present and expected values.  To perform calculation of
present and expected values we need a financial and a probabilistic structure.
The simplest financial structure is compound interest with constant force of in-
terest δ and the discount function is equal to e-dt.   

Let  bs(t) the benefit paid to the policyholder if S(t)=S and d R(t) m hence
bs(t) . dt is the benefit paid to time interval [t,t+dt]. Let  I{s(t)=c} the indicator of the
event S(t) = S and d R(t) m, i.e.: 

Then the random present value at time t0 is: 

Yt0 (t)=ut-t0 . I{S(t)=c} . bs(t) . dt                                                                          (16)

and the random present value of the annuity benefit on the time interval  (u1, u2) is:

(17)

Actuarial values are the expected present so for equations (16) and (17) we take:   

(18)

and

(19)

Considering constant benefit bs(t)=b and under the UDD hypothesis, the fol-
lowing approximation can be assumed:  

(20)

If we denote by Tx the duration of a claim, for a claimant aged x at the begin-
ning of the corresponding sickness, the average duration of this claim (in years)
is given by (Cordeiro, 2002, p. 175): 

(21)
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From equations (20) and (21) it is obvious that we need rx+t,t to calculate ave-
rage duration of claim actuarial values. 

4. The data 

The data come from a Social Security Agency concerning claims for the years
1998 to 2003. Unfortunately, Social Security Organizations in Greece haven’t or-
ganized yet, a system for collecting data about the duration of the disability. 

The distribution of cases per year is shown in Figure 1. Each claimant is clas-
sified according age and sickness duration. For modeling purpose, the data are
located at the centroid of their respective cells determined by weighted averaged,
with relative exposure as weights.    

FIGURE 1

Distribution of claims per year

Data is classified into nine age groups: 20-24, 25-29,…,60-64. Table 1 presents
the mean age, calculated as mention above, for each age group. 

Data is classified into 10 sickness period: 0-1 week, 1-2 weeks,…,9-10 weeks
and the centre of the interval is calculated (Table 2). For modeling purpose the
duration converted from days to years assuming that one year equals 365.25 days.

5. Sickness recovery intensities 

To estimate the values rx,z we follow the methodology presented in CMIR 12.
This methodology can briefly described 

• We choose age intervals x1 x x2 and sickness period z1 z z2

which are sufficiently small for us to accept that rx,z is approximately constant
over the rectangle  [x1, x2] x [z1,z2].  
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• We calculate the number of sickness recoveries, Ox,z, over the rectangle [x1,

x2] x [z1,z2].

TABLE 1

Mean age by age group

• We calculate the total time, Ex,z, spent sick in the observation period, co-
unting only the time when the policyholder were aged between x1 and x2 and
when the duration of their sickness was between z1 and z2.

TABLE 2

Average sickness duration (days) by sickness period

Under reasonable assumptions (CMIR 12, 1991, pp. 10-12) the maximum li-

kelihood estimator of rx,z is where:

Sickness period Centre of interval (days)

1 week 5.6

2 weeks 10.4

3 weeks 16.71

4 weeks 24.55

5 weeks 32.12

6 weeks 38.69

7 weeks 46.01

8 weeks 52.85

9 weeks 60.53

10 weeks 65.4

Age group Mean age 

20-24 22.88

25-29 27.17

30-34 32.02

35-39 36.96

40-44 41.91

45-49 47.01

50-54 52.03

55-59 56.75

60-64 61.40

46 G. Mavridoglou, P. Kiochos, SPOUDAI Journal, Vol. 61 (2011), Issue 1-2, pp. 39-54



(22)

For large samples sizes, Schou & Vaeth (1980) suggest this assumption is  
reasonable if expected number of recoveries exceeds 10, we assume that:

(23)

Table 3 presents the crude sickness recovery intensities.   

6. The graduation process

Graduation may be regarded as the principles and methods by which a set of
crude values is adjusted to provide a suitable basis for inferences to be made and
further practical calculation to be made (Haberman & Renshaw, 1996, p. 411).   

There are many graduation methods that have been suggested. We can clas-
sify these methods to three categories graphic methods, parametric methods and
non parametric methods. In this paper, we present a parametric approach to gra-
duation based on generalized linear models. 

Sickness recovery intensities rx,z are perceived as functions of two covariates, age x
and sickness duration z, so the graduation process is like an exercise in surface fitting.  

TABLE 3

Crude sickness recovery intensities 

Age
Group

Duration (weeks)

1 2 3 4 5 6 7 8 9 10

20-24 9.6893 23.9363 40.1923 14.1084 17.8171 9.2671 19.5888 9.0046 10.3961 14.6791

25-29 9.9617 28.7064 41.6407 18.2863 20.4584 12.2276 13.2048 10.2887 12.3814 10.6531

30-34 9.3368 30.7037 52.4687 14.4024 18.6552 8.4009 14.3097 9.1980 9.0615 9.6004

35-39 8.6342 26.0488 44.3017 14.8971 20.5197 10.7602 13.6048 10.8347 10.6989 21.2850

40-44 7.7638 26.9292 43.8871 14.3191 21.3932 8.3240 12.8401 10.9225 15.2528 17.9765

45-49 6.7798 25.1078 40.7328 13.9724 21.3266 12.1333 9.6316 7.2759 8.6572 20.3244

50-54 6.5576 21.3218 36.0964 12.7897 17.4731 9.5817 9.7734 7.8852 14.4969 20.9199

55-59 5.1422 21.0652 32.2751 14.3534 14.5416 6.9180 8.7202 8.6715 12.6873 13.6118

60-64 6.2526 15.8071 22.2554 7.7202 17.5722 10.9339 5.1540 7.6976 11.7531 18.5829
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The deferred period is three days and a notable feature of the sickness reco-
very data is the low recovery rate associated with the week immediately after the
sickness benefit becomes payable (1st week). A possible reason for this is be-
 cause the policyholders near to recovery at the end of deferred period are less li-
kely to bother to submit a claim on the grounds that the claim would be
short-lived. We also note an irregular recovery rate change between six and eight
weeks.  

Let  Y=(Yt) a vector of independent random variables Yt,i=1,2...,n and
m=E(Y) a vector of means. GLM is characterized by three basic ingredients:  

• The modeling distribution of  random variable Yt,
• Covariates  xt and the linear predictor

• Link-function g, which link the linear predictor with means m
nx,z = g (m).
As a general rule the modeling distributions available for use are restricted to

the exponential family of distributions (Renshaw, 1991, p. 295). 
The function g is both differentiable and one to one so that, the inverse func-

tion g-1 exist and m = g-1(nx,z)

In our case we have:  g(rx,z)=nx,z rx,z=g-1(nx,z) rx,z=g-1(Σj fj (x,z). bj).

Estimates of the unknown bj and diagnostic checks based on the assumption
that Ox,z follow the Poisson distribution, Ox,z˜P (Ex,z . rx,z) 

with mean and variance respectively  mx,z=E(Ox,z)=Ex,z . rx,z and Var(O x,z)=mx,z.

From the above relations we have mx,z=Ex,z . rx,z=Εx,z . g-1(Σj fj (x,z). bj).

The estimations, , for the unknown parameters , are calculated by ma-

ximizing the log-likelihood. Denoting the resulting fitted values by

the optimum value for the log-likelihood
under the current model structure, c, is:

Let f be the saturated model, which has the property that its fitted values,

constitute a perfect fit. The log-likelihood under the saturated model
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becomes:

and the model deviance D(c, f) is 

The overall measure of goodness of fit is provided by the model deviance.
Another criterion for evaluate the goodness of fit is Bayes Information Criterion

(BIC). The BIC is defined like:

where K is the number of parameters and N is the number of observation (Plat, 2009).
The reader is referred to McCullagh and Nelder (1989, pp. 357-371) for fur-

ther commentary on diagnostic model checking.   
A mentioned above sickness recovery intensities rx,z are perceived as functions

of two covariates, age x and sickness duration z and the liner predictor is assigned
the additive structure
nx,z = μ+αx+βz (24)

And under the log link the graduation formula is  rx,z=e(μ+α
x
+β

z
).

Figure 2 and 3 reproduce the graphs of parameter estimates  µ̂+ against

duration z and parameter estimates against age x.  We note that apart from
some fluctuations  αx, βz appears to reduce linearly with x and z respectively. 

FIGURE 2

Sickness parameters against duration
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According the notes for Fig 2 and 3 we approached the graduation using log
link and a range of possible linear predictors of the two varieties x and z. We use
two kind of linear predictors, fractional polynomials and break- point predictor
terms. The second approach used to model the effects noted in section 6.       

Fractional polynomial of degree m is the function 

where X is a single covariance, m is a positive integer,  p=(p1, p2, ..., pm) is a real value
vector of powers with p1<p2<...<pm and ξ= (ξ0, ξ1, ..., ξm) are a real- valued coef-
ficients. The round bracket notation signifies the Box-Tidwell transformation,

.

FIGURE 3

Age at sickness parameters against age 

Royston and Altman (1994, pp. 429-436) extended the definition for any ar-

bitrary powers p1 p2 ... pm, with H0(X)=1 and p0=0, 

where for j=1,..., m
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They used the notation φm(Χ;p) tο express the equations, for example φm

(X;0,1,2,2,2) means the equation with components: H0=1, H1=lnX, H2=X,
H3=X2, H4=X2. lnX, H5=(X.lnX)2. For modelling a data set of size n using frac-
tional polynomials, they suggest to determine the best value of m and the real-
valued vector p=(p1, p2, ..., pm)  selected with replacement from the fixed set F=
{-2, -1, -0.5, 0, 0.5, 1, 2, ..., max (3,m)}. They also proposed a two step procedure
to fit multiple covariates.  

The graduation formula that is adopted is a combination of age x and dura-
tion z:

(25)
The parameters estimation presents in Table 4 and the goodness of fit checks

to Table 6.  

TABLE  4

Parameter estimation for fractional model 

Linear predictors with break-point predictor terms are functions of the type:

with knots zk, where .

We propose a linear predictor with three knots, z1=0.019, z2=0.038, z3=0.057   
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(26) 
The parameters estimation presents in Table 5 and the goodness of fit checks

to Table 6.  
To comparison fit quality for the two approaches we use deviance and Bayes

Information Criterion. The results present at Table 6. The table shows that for
Greek experience the break- point model gives the best fitting results. The pre-
dicted values present at Table 7. 

TABLE 5

Parameter estimation for break point model 

TABLE 6 

Comparison fit quality  

7. Conclusion 

The results of this study can be used also from Insurance companies and So-
cial Security Organizations for the estimation of the total cost of the treatment
of a disease. 

Model
Deviance BIC

DF Value Value/DF Value

Fractional
polynomial

91 346.8786 3.8119 818.7929

Break - point 91 163.3524 1.7951 635.2667
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In the first part of his paper a multistate model is proposed for health insurance
in Greece. The model has three stages and the mathematical basis of the model and
the basic probabilities are presented. One of the main factors for calculating actu-
arial values and average duration of claims is the sickness recovery intensities.

In the second part, we study sickness recovery intensities of a Greek popula-
tion as a functions of two covariates, age x and sickness duration z. The data has
irregular sickness recovery rates between six and eight weeks of sickness. To
model these effects we propose two models, one using fractional polynomials
and a second with break- point predictor terms. According the criteria we gave
to evaluate the models we proposed a model with three knots for graduated the
sickness recovery intensities.  

In next study we will compare the Greek rates with the UK experience and we
will classify the diseases in groups according sickness duration.

TABLE 7

Predicted values

Age
Group 

Duration (weeks)

1 2 3 4 5 6 7 8 9 10

20-24 7.496142 23.24207 37.80964 17.13395 12.71954 11.26617 11.60902 11.29038 11.96069 11.77625

25-29 12.19549 35.87034 55.46258 23.34875 16.29122 13.60223 14.1692 14.72589 15.96456 14.93614

30-34 10.36805 30.74306 42.16609 15.61678 11.78106 10.44923 11.19181 11.86756 13.18093 12.91313

35-39 8.743666 27.0399 42.0756 17.25441 12.64605 10.75047 11.18924 11.7773 12.44783 10.65983

40-44 7.772669 24.13772 37.41692 15.4909 11.11942 9.761757 10.62514 11.31906 11.84362 9.685329

45-49 7.856087 25.30896 41.04729 17.26567 12.99791 10.57533 11.56706 12.83538 14.77714 12.68438

50-54 7.057875 23.57335 41.01371 18.84674 14.61729 12.98597 14.20429 16.04442 17.61508 13.51257

55-59 6.54384 22.32048 41.21201 18.76501 14.49857 13.85197 15.8172 17.67587 19.29389 16.77754

60-64 2.084172 7.390384 15.6667 8.311067 6.810362 5.820637 6.587605 7.887732 8.761511 7.581646
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