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Abstract 

Value at Risk (VaR) technique is very important for the measurement and control of mar­

ket, credit and also operational risks. VaR has become an essential tool for financial institution 

risk management. VaR forecasts of financial instruments are also of great importance. The fact 

that volatility seems to cluster over time in a predictable way has very important implications for 

investors, risk managers and financial institutions. In order to generate daily VaR forecasts of 

equity portfolios for S&P 500, FTSE ALL SHARE and NIKKEI 500 and of over ten-years 

Goverment bond portfolios for US and the UK we use the exponentially weighted moving aver­

age (EWMA). EWMA model emphasizes in most resent observations by assigning heavier 

weights to them than to those from the distant past. In the latter EWMA estimates are used as 

inputs in three VaR estimation methods in order to produce forecasts based on each one of 

them. The three methods are: the Variance Covariance approach used by JP Morgan Risk Met­

rics, the Historical Simulation approach and the Hybrid method. Finally we use six backtesting 

techniques for the validation of the estimation and the evaluation of the forecasting perfor­

mance. The results indicate that Historical Simulation out performs the other two competing ap­

proaches with close second the Risk Metrics approach. (JEL Classification: G10 G2 C52 C53). 

Key Words: Risk Management, Value at Risk, Financial institution, Forecasting, EWMA, 

Backtesting. 

1. Introduction 

During the last few years, risk management has become one of the main 
concerns in financial industry. Financial institutions invest into developing reli­
able risk measurement and management techniques in order to measure and 
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control market, credit and operational risks. The main advanced technique in­
cludes the use of Value at Risk (VaR) models. These models calculate the 
worst expected loss of a portfolio of financial instruments at a pre-specified 
time and level of confidence. VaR exhibits the attractive property of summa­
rizing market risks in one single number. This simplification is significant for 
risk managers because it makes this technique very informative and easily un­
derstood. There are four basic approaches of computing VaR: Variance 
Covariance approach, Historical Simulation approach, Monte Carlo Simula­
tion and Extreme Value approach. However there are some drawbacks for 
these methods. One negative feature is that they use past data to provide esti­
mates of the maximum future potential loss. An additional weakness is that the 
VaR models are based on distributional assumptions. Furthermore, risk man­
agers have emphasized in the idea of complementing VaR estimates with stress 
testing. The definition that Kevin Dowd1 gives for stress testing is: "Stress test­
ing is a variety of different procedures that attempt to gauge the vulnerability 
of our portfolio to hypothetical events". These tests provide risk managers with 
information about the expected losses caused by specific events or scenarios. 

Another aspect essential for risk management is the volatility forecasts of 
the portfolio returns. A firm needs a time dynamic forecast that will take into 
account the dynamic properties of variance such as volatility clustering. Good 
forecasts also provide better control of market financial risks and lead to good 
decisions. The forecasts' literature includes various methods. In this paper the 
Exponentially Weighted Moving Average (EWMA) model is employed in 
order to generate one-day VaR forecasts for five index portfolios. These 
forecasts are a weighted average of the previous time period's variance. The 
basic characteristic of EWMA is that it assigns heavier weight to the most 
recent observations than those from the distant past. EWMA forecasts are 
used as input in three VaR estimation methods in order to generate forecasts 
based on of each of them. The three methods are the Historical Simulation 
approach, the Variance Covariance approach and the Hybrid approach, which 
was introduced by Christoffersen (1998). The first two approaches are 
standard estimation techniques and the third is an extension to Historical 
Simulation method (we use this method as an alternative to Hull-White 
approach). The aim of this study is to investigate which method performs best 
in forecasting VaR. 

However, financial institutions in order to evaluate the performance and 
verify the accuracy of their estimates of the maximum losses use back testing 
techniques. Back testing involves a variety of methods since a definite test for 
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all the VaR estimates does not exist. Since there is no complete theory for the 
evaluation of the VaR forecasts we use various methods for the verification of 
their accuracy. 

This paper consists of three parts. The first part introduces a general view 
of modern risk management and VaR. The second part discusses the basic 
methods for VaR estimation and gives a general view of our method of fore­
casting volatilities. The third part presents the data, the methodology used for 
the generation of VaR forecasts and the back testing techniques used to ver­
ify the accuracy of these forecasts. Finally the last section includes the empiri­
cal findings and the conclusions. 

2. Value at Risk (VaR) 

The measurement of the market risk of financial instruments' portfolio is 
very important for investors as well as financial institutions. The financial insta­
bility and the large losses that corporations faced over the past decade made 
the identification of risks and their measurement an urgent issue. VaR is a 
product of the effort of several financial institutions to measure and control 
risks of their activities during the late 1980's. The most famous of the VaR 
methodologies that were developed is the Risk Metrics approach, which was 
introduced by JP Morgan. In recent years, it has become not only a risk mea­
surement method but also a process that helps decision-making and invest­
ment guiding. It is a methodology that has gained rapid acceptance as a valu­
able approach to risk management. 

Value at Risk is defined as the maximum monetary loss of a portfolio due 
to market fluctuation at a given level of confidence over a given risk horizon. 
VaR uses statistical methods to derive a single number that summarizes mar­
ket risks. It enables a firm to determine which investments offer the highest ex­
pected returns at the least expense of risk. 

Nowadays, VaR methods are widely used not only by financial but also by 
non-financial institutions and fund managers. The popularity of these models 
is due to their appealing features. The first and most obvious advantage of 
VaR models is their ability to express the market risk of an entire portfolio in 
one number. This number represents the potential loss of the portfolio in mon­
etary terms. Therefore, there is no need for special technical knowledge in or­
der to understand it. One more interesting characteristic is that VaR allows for 
comparisons between different investment positions and risky activities. The 
fact that it is a single number makes easy the comparison of positions across 
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different countries, instruments (one can compare the risk for an equity with 
the risk of a bond), markets (currency, foreign exchange or interest rates) and 
type of risks. These comparisons enable firms and investors to adjust their in­
vestment strategy for risk. They can set position limits in order to control their 
risk exposure. Another advantage is that VaR takes into account the interac­
tion between different risk factors. This means that if two risk factors offset 
(do not offset) each other then VaR methodology gives a low (high) risk esti­
mate. 

Although VaR methods are very popular, some negative aspects character­
ize them. The first disadvantage derives from the fact that these methods use 
past historical data to provide an estimate for the future. What happened in 
the past does not mean that will happen again in the future and hence it is easy 
for the estimation to be incorrect. Second, the VaR number can be calculated 
by using several methods. These methods try to capture volatility's behavior. 
However, there is an argument on which is the method that performs best. A 
third drawback for VaR is that the methods for computing it are based on dif­
ferent assumptions. These assumptions help us with the calculation of VaR but 
they are not always true (like distributional assumptions). Furthermore, there 
are many risk variables such as political risk, liquidity risk, personnel risk, regu­
latory risk, phantom liquidity risk and others that cannot be captured by the 
VaR methods. 

VaR has several uses. First, it can be used by senior management to set risk 
targets and position limits. According to the desired level of risk a firm can set 
an overall VaR, which in turn represents the overall target risk. VaR is very 
helpful for the capital allocation. Since this number shows what is the maxi­
mum expected loss, the firm can determine its capital requirements at each dif­
ferent level or even at each individual investment. Thus, the riskier the activity 
the greater the VaR and consequently the greater the capital requirement and 
vice versa. One more attractive use is that VaR can be used to assess the risks 
of different investment opportunities before decisions are made, as well as to 
evaluate the performance of business units after the event. These uses make 
obvious that VaR methodology improves the process of risk management. By 
using such methods a risk manager can measure not only market risks but also 
other risks like credit, liquidity and cash flow risks. Finally, it enables firms to 
react quickly and appropriately to the capital adequacy regulation. 

As the risk management systems evolve, regulators reexamine the capital 
standards on financial institutions. Banks and insurance companies are re-
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quired to keep enough capital in order to cover their unexpected losses. Evi­

dence of the great importance of VaR methods is their recognition by the reg­

ulators. The first important proposition came on 1988 from Basle Capital Ac­

cord, which was requiring tighter risk management systems. In 1994 Bank for 

International Settlements Fisher report advised financial intermediaries to dis­

close VaR measures publicly. The Derivatives Policy Group has also advised 

the use of VaR models. The most important proposal for the recognition of 

this methodology came from the Basle Accord on Banking Supervision in 

1996, which allowed banks to adopt their own risk measurement models in or­

der to calculate the minimum regulatory required capital to cover their market 

risks. 

The estimation of VaR can be conducted by a variety of methods. This fact 

makes the verification of the veracity of the statistical assumptions underlying 

VaR calculations and the accuracy of VaR estimates necessary. This means 

that after VaR estimation one needs to follow a procedure called back testing 

in order to verify the accuracy of VaR models. 

3. VaR and Forecasting methodology 

There are various methods, which produce VaR measures. We can distin­

guish four different basic methods of calculating VaR: Variance Covariance 

approach, Historical Simulation approach, Monte Carlo Simulation and Ex­

treme Value Theory. This chapter attempts to describe theoretically the meth­

ods, which we use in our research, and presents a brief summary of their ad­

vantages and disadvantages. Additionally, we present Exponentially Weighted 

Moving Average (EWMA), our methodology of forecasting variance. 

According to the variance covariance approach all market risks are normal 

and the portfolio is a linear function of these normal risks. If normality holds 

the VaR is the multiple of portfolio's standard deviation and the portfolio 

standard deviation is a linear function of individual volatilities and covariances. 

In order to calculate VaR one needs to find the portfolio's standard deviation 

(using the variance covariance matrix and the weights of individual assets) and 

then multiply it by the value of the portfolio and the desired confidence level. 

The formula for VaR is: 

VaR = -κ(α)*Ρ*σΡ (1) 
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Where σp is the portfolio's standard deviation, Ρ is the value of the portfolio 
and κ(α) is the desirable level of confidence (the (l-α)% quantile of the stan­
dard normal distribution). 

Before someone can use this approach to calculate VaR should consider 
some other issues, which concern the nature of returns. As in the case of bonds 
(and generally fixed income instruments) and derivatives, returns are not lin­
ear functions of risk factors. One solution to this problem is the delta-normal 
approach, which takes a first order approximation to the returns and then uses 
this approximation to calculate VaR. Delta-normal approach works by replac­
ing the true positions with linear approximations and handling them in the 
same way as other linear positions. Hence, we are assuming that the 
non-linearity in our position is sufficiently limited so that we can ignore it and 
still produce accurate VaR estimates. This approach has some attractive as­
pects. The first is that maintains the linearity of the portfolio without adding 
any new risk factors. It also requires few additional data. By Delta-normal ap­
proach one can handle more complex positions without loosing the benefits 
and convenience of the normal distribution. 

However, one may need more precise VaR estimates without loosing the 
convenience of working with the variance covariance method. This is the case 
of the second order or delta-gamma approach. Second order approximation 
assumes that returns are normally distributed but allows for a non-linear rela­
tionship between the portfolio's value and the underlying returns. According to 
this method VaR can be calculated in two steps. The first step is the calcula­
tion of the first four moments (mean, standard deviation, skewness and 
kurtosis) of the portfolio's return distribution. The second step is to find a 
distribution that has the same four moments as the ones from portfolio's return 

distribution and then to find the a% quantile. After these steps the calculation 
of VaR is brought back to equation (1). 

Generally, for large portfolios where optionality is not the most important 
issue the delta normal approach is proper because it provides a fast and effi­
cient calculation of VaR. On the other hand, for portfolios that are exposed to 
a small number of risks and with significant option components the delta 
gamma approach offers increased precision at a low computational cost. 

Variance covariance approach has many attractive features. First, this 
method, because of normality, makes the calculation of VaR very simple. Al­
though the calculations are easy to implement, the figures of VaR produced by 
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this approach are very informative both on confidence level and holding pe­
riod. Besides these, variance covariance method is very informative about the 
expected tail losses. However, there are some drawbacks in this approach. Its 
main problem is the excess kurtosis, which means that the returns distribution 
may have fat tails. This derives from the assumption that normality holds and 
means that VaR will underestimate the expected losses. Moreover, the normal 
distribution assumes the symmetry of the returns distribution while in reality fi­
nancial returns often exhibit asymmetric behavior. This negative aspect repre­
sents the problem of negative skewness. This is because the right tail of the dis­
tribution contains more data than the left one. 

Historical Simulation Approach tries to find an empirical distribution of the 
rates of return assuming that past history carries out into the future. This 
method uses the historical distribution of returns of a portfolio to simulate the 
portfolio's VaR. Often historical simulation is called non-parametric approach, 
because parameters like variances and covariances do not have to be esti­
mated, as they are implicit in the data. It is simple to implement if daily histori­
cal daily data have been collected. The choice of sample period influences the 
accuracy of VaR estimates. Longer periods provide better VaR estimates than 
short. 

The first step on implementing this method involves identifying the instru­
ments in a portfolio and collecting a sample of their historical returns. The sec­
ond step is to calculate the simulated price of every instrument using the 
weights of the current portfolio (in order to simulate the returns in the next pe­
riod). The third step assumes that the historical distribution that the returns 
follow is a good proxy for the returns in the next period. Historical Simulation 
uses the actual percentiles of the observation period as VaR measures. For in­
stance for an observation period of 1000 days, the 95th percentile historical 
simulation VaR measure is the 51st largest logs observed in the sample of 1000 
outcomes. That is because the five percent of the sample that should exceed 
the risk measure is equal to fifty losses. 

One of the greatest advantages of this method is that it does not depend on 
assumptions about the distribution of returns. Therefore, the mistakes of as­
suming parametric distributions with thin tails where in reality the distributions 
of returns have fat tails are avoided. One more positive characteristic is that 
the data set reflects gamma, vega risks as well as the correlations and 
volatilities. Thus, there is no need for any parameter estimation. In relation to 
the previous characteristic Historical Simulation gives information about other 
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useful statistics such as skewness and kurtosis. This approach does not make 
any distinction between the type of position and market risk (that is there are 
not different models for equities, bonds and derivatives like in variance 
covariance approach). 

Although Historical Simulation seems to have many attractive characteris­
tics, there are some disadvantages. First, Historical Simulation results are de­
pendent on the data set from the past, which may be too volatile or not, to pre­
dict the future. Hence, one cannot provide accurate estimates of VaR because 
what happened in past will not necessarily happen in the future. The same oc­
curs when the period used for the estimation of VaR includes serious incidents 
(for example economic shocks), which are unlikely to happen in the future. 
This can also be reversed by assuming that important events can happen in fu­
ture but because the data set (the observation period) does not include them 
the HS underestimates VaR. Second, Historical Simulation assumes that re­
turns are independent and identically distributed. The data display time vary­
ing property of volatility. For example, by choosing a long time series there is a 
problem in VaR estimation because too much emphasis is placed on data from 
the distant past. With short time series the estimations will probably not be re­
liable (because of the small length of the observation period). Another draw­
back for this method is that it uses the same weights on all past observations. If 
an observation from the distant past is excluded the VaR estimates may 
change significantly. 

Forecasts are of great importance and widely used in economics and fi­
nance. It is reasonable that good forecasts lead to good decisions. The fact that 
volatility seems to cluster over time in a predictable way has very important im­
plications for investors, risk managers and financial institutions. VaR increases 
as the volatility increases and vice-versa. There are many approaches for fore­
casting VaR. This paper uses the exponentially weighted moving average to 
produce daily VaR forecasts. 

The EWMA approach for forecasting volatilities emphasizes on recent ob­
servations by using exponentially weighted moving averages of squared devia­
tions. This method attaches different weights to the past observations con­
tained in the observation period. Since the weights decline exponentially, the 
most recent receive much more weight than the earlier ones. EWMA model 
calculates the volatility forecast for the next period as a weighted average of 
the previous period's volatility forecast and the current squared return. The 
formula for the EWMA model is: 
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where σt-1 represents the volatility of the returns at time t-1, rt-1 represents the 
return at time t-1 and λ is the decay factor. This method emphasizes that the 
volatility on a given day t-1 is actually used as a predictor for the volatility of 
the next day t. The EWMA model depends on the decay factor. The parameter 
λ (0<λ>1) determines the relative weights that are applied to the returns and 
the effective amount of data that are used in volatility estimation. In this paper 
the decay factor is set to be 0.94 just like Risk Metrics for daily data2. 

This method is equivalent to the Integrated GARCH or IGARCH (1,1) 
family of popular conditional models. It can be viewed as a special case of 
GARCH process, which is given by the equation: 

where α0, α1 and α2 are parameters. By setting α0 to 0 and α1 and α2 sum to 
unity the GARCH model becomes an exponentially weighted estimator. 

EWMA approach explains volatility clustering, which means that abnormal 
volatility in one period is likely to lead to abnormal volatility in the next period. 
It also allows the volatility to vary from one period to another. A very impor­
tant feature of the exponentially weighted estimator is that it can be written in 
recursive form in order to be used for making volatility forecasts. To derive 
this form one should assume that an infinite amount of data is available. This 
recursive form can be written as follows: 

4. Data, Value at Risk Estimation Methods and Backtesting 

4.1 Data 

In this section we present the data and the VaR estimation and validation 
procedure. The standard EWMA estimator is used to generate daily VaR fore­
casts based on either Variance Covariance approach (or JP Morgan Risk Met­
rics approach) or Historical Simulation approach. The third method, which is 
Hybrid approach, produces daily forecasts by itself without using any volatility 
forecast models. The forecasts of the alternative methods are evaluated using 
seven techniques: The proportion of failures, the unconditional coverage, the 
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conditional coverage or independence, the correct coverage, the Lopez' magni­
tude of exceptions, the mean relative bias and the root mean squared relative 
bias. 

The data used are bond and equity data for the period between 25 February 
1987 and 1 February 2002 provided by Primark Datastream. The sample con­
sists of daily prices for the following five indices: S&P500, FTSE ALL SHARE, 
NIKKEI 500, US Government Bonds over 10 years, UK Government Bonds 
over 10 years. For all five indices we have a total of 3900 observations. We 
need to have a powerfull set of back testing techniques, hence, the daily obser­
vations ensure that. Furthermore, the equity indices represent three of the 
most significant markets worldwide. The bond indices are an average of all 
government bonds with time to maturity over 10 years4. The selection of these 
two indices is due to the fact that there are limited resources that can provide 
data with such long period and high density. For these time series we calcu­
lated geometric returns. The formula for the geometric returns is: rt = lnPt / 
InPt-1 where Pt is the price for day t. After that, we calculate EWMA. For this 
calculation we need an initial value for the volatility, which is set at zero. As 
mentioned before, EWMA estimates are used as inputs in the following mod­
els in order to generate forecasts based on each one of them. 

4.2 Value at Risk Estimation Methods 

Variance Covariance Approach 

For the Variance Covariance approach, in this paper we employ one of the 
most widely used volatility estimation and forecasting methodology, the JP 
Morgan Risk Metrics5. This approach applies exponentially declining weights 
to the returns from distant past (and greater weights to more recent returns) 
in order to estimate conditional volatilities and correlations. Exponential 
smoothing allows for cyclical behavior of return volatility to be captured. Expo­
nentially weighted moving average model can be considered as an improve­
ment over the traditional volatility forecasting method, which is based on mov­
ing averages with fixed, equal weights. 

Risk Metrics methodology assumes that returns on securities follow a con­
ditionally (on the information set at time t) normal distribution and that the 
change in position's value is a linear function of the underlying return. Al­
though this model is based on this unrealistic assumption and ignores the pres­
ence of fat tails in the probability distribution of returns, it is commonly found 
that it performs satisfactory. Nelson6 (1992) showed that even misspecified 
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models can estimate volatility rather accurately. He showed that if the return 
generating process is well approximated by a diffusion, a broad class of even 
misspecified ARCH models can provide consistent estimates of the conditional 
volatility. Another important aspect is that Risk Metrics technique not only re­
acts fast to shocks in the market as the most recent data carry a heavier weight 
but also after an abnormal return, the volatility declines exponentially as the 
weight of the shock observation falls. VaR is computed as the α quantile times 
the portfolio standard deviation. In order to provide daily VaR forecasts the α 
quantile is multiplied to the EWMA standard deviation, which is given by the 
following formula: 

where σt is the one-day volatility forecast, λ is the decay factor, rt is the portfo­
lio's returns and σt-1 is the last day's volatility. Therefore the formula for the 
daily VaR forecasts is: 

where κ (α) is the α quantile of the standardized distribution and α is one mi­
nus the desired confidence level (l-a)% and V is the value of the portfolio. 

Historical Simulation 

In order to compute daily VaR forecasts we use an extension of the tradi­
tional Historical Simulation, which incorporates volatility clustering. This ex­
tension, which allows for volatility updating, was proposed by Hull and White 
in 19987. The main feature of volatility clustering is that large returns tend to 
be followed by more large returns, small returns tend to be followed by more 
small returns. One consequence of volatility clustering is that it induces lepto-
kurtosis in the unconditional distribution of portfolio returns. Therefore, it im­
proves VaR estimates, since if we know that we are currently in a high volatil­
ity period, our estimates of VaR should be correspondingly higher. In order to 
incorporate volatility clustering into the calculation of VaR we need a model 
of time-varying volatility. 

In their approach, Hull and White, use GARCH or exponentially moving 
average model in concurrence with the historical simulation in order to calcu­
late VaR. They suggest that historical simulation can produce better estimators 
by taking into consideration the volatility changes experienced during the pe­
riod covered by historical data. They consider a portfolio that depends on a 
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number of market variables. They did not use the actual historical percentage 
changes for calculating VaR but the historical changes, which have been ad­
justed and reflect the ratio of current daily volatility to the daily volatility at the 
time of the observation. 

We compute the empirical quantile of the historical standardized distribu­
tion, that is the distribution of returns scaled by each days' estimated standard 
deviation from the model, and then we scale this up by the model's forecast of 
tomorrow's standard deviation. For the estimation of this model a rolling win­
dow of 1000 observations is used. Initially EWMA is estimated for all the ob­
servations but due to the fact that a rolling window is used, the first 1000 obser­
vation are discarded. This means that we calculate 2900 daily VaR forecasts for 
Historical Simulation method. Thus it is necessary to ignore the first 1000 ob­
servations for the other two VaR estimation methods in order to be able to 
compare them equally with Historical Simulation. Just like in Variance 
Covariance approach VaR is computed for 95% and 99% levels of confidence. 

The daily VaR forecasts are provided by the following formula: 

where κ(α) is the α percentile of the standardized distribution and α is one mi­
nus the desired confidence level (l-α)% and V is the value of the portfolio. 
The term σ t + 1 represents the standard deviation of the returns at time t. The 
standard deviation estimate that is used to standardize returns is found from 
the EWMA model. These standardized returns give us the empirical distribu­
tion of portfolio's returns, which we use to produce VaR forecasts. 

Hybrid Approach 

The third method that is used to provide forecasts is the Hybrid approach. 
This method was introduced by Boudoukh, Richardson and Whitelaw (1998)8. 
In their paper they use elements from the methodologies of two very popular 
approaches such as the Risk Metrics and the Historical Simulation. It esti­
mates the percentiles of the returns directly, using weights that decline on data 
from the distant past. This approach can be implemented in three steps: 
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2) Put the returns in ascending order. 

3) In order to get the a% VaR of the portfolio, start from the lowest return 
and keep accumulating the corresponding weights until the a% is reached. To 
get exactly the a% of the distribution linear interpolation is used between adja­
cent points. 

We calculate VaR for 95% and 99% level of confidence for all five indices. 

4.3 Backtesting 

There are many measures have been proposed for the validation of a VaR 
model performance in forecasting. Hence, in order to evaluate the perfor­
mance of competing models we present a variety of different measures, which 
provide an indication of model performance. These indicators attempt to cap­
ture the accuracy of the different models by evaluating the extent to which the 
proportion of losses that exceed the VaR estimates are consistent with the 
models' stated confidence level. Another valuation technique that we employ 
examines the variability of VaR estimates produced by the different VaR esti­
mation methodologies. 

Proportion of Failures 

The failure or exception can be defined as the number of times for which 
the real portfolio returns are smaller than the estimated Value at Risk. A score 
of 1 is imposed when an exception occurs and 0 when it does not. Proportion 
of Failures test compares the total number of failures to the total accumulated 
sample size. For the sample of Τ observations the Proportion of Failures can 
be calculated from the following formula: 

where t=l,2,....,T is the number of observations and Ν is the failure at time t. 

Unconditional Coverage 

Exceptions or Failures can be modeled as independent draws from a bino­
mial distribution with probability of occurrence equal to N/T percent (excep­
tions/sample size). For a VaR forecast to be accurate its unconditional cover­
age ρ must equal the proportion of failures (N/T). In 1995 Kupiec9 came up 
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with a Likelihood Ratio (LR) to test the null hypothesis that the probability of 
exception is ρ against the alternative that the probability differs from ρ assum­
ing that the exception process is independently distributed. Kupiec's LR is 
given in the following formula: 

Conditional Coverage or Independence 

The conditional coverage or independence test of VaR estimates counts the 
number of exceptions over the observed period without considering the infor­
mation available at each point of time. If the returns show heteroskedasticity 
that depends on time then the conditional coverage becomes more important. 
In this case VaR models that do not take into account variance dynamics, pro­
duce VaR estimates that may have incorrect conditional coverage but correct 
unconditional coverage. In 1998 Christoffersen10 proposed a LR based on in­
terval forecasts. This ratio allows the separation of the effects of the volatility's 
dynamic properties from the effects of the assumptions for the probability dis­
tribution of the returns. Christoffersen's likelihood ratio for the independence 
of the exceptions is given by the following formula: 

Tij notation denotes the number of observations in state j after having been in 
state i the period before. 

Correct Conditional Coverage 

In the event that the conditional distribution of returns and the variance dy­
namic properties (for example time varying volatility) are captured by a VaR 
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model then the exceptions should be unpredictable. The exception series 
should show both correct unconditional coverage and serial independence. 
The likelihood ratio for correct coverage is a test for both of these properties 
and it is given by the following formula: 

The LRcc is the sum of Kupiec's unconditional coverage and Chri-
stoffersen's independence tests. 

Lopez Magnitude of exceptions 

Lopez (1999)11 introduced a new measure for the accuracy of VaR esti­
mates based on the magnitude of exceptions. As an alternative to the hypothe­
sis testing framework, he proposed an evaluation method that uses standard 
forecast evaluation techniques. Lopez indicates as an accuracy indicator of 
VaR estimates how well they minimize certain loss functions. He is introducing 
two loss functions that represent specific regulatory concerns. The first loss 
function is implied by the binomial method and is equal with: 

where Cm,t = 1 if -VARt>Xt, and Cm,t = 0 if -VARt<Xt. The appropriate 
benchmark price for the above function is simply the number of observations 
multiplied with 1-a, where a is the desired level of confidence. The second loss 
function addresses the magnitude of the exceptions. That loss function is de­
scribed by the following equations: 

A magnitude term is incorporated into the binomial loss function. The ex­
ception now takes a score l+(r t+1+VaRmt), where rt+1 is the return and 
VaRmt is the Value at Risk forecast. The term (r t+1+VaRmt) is based on the 
magnitude of failures. Finally, Lopez' statistic calculates the sum of the num­
ber of exceptions and their squared distance from the corresponding VaR. 
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Mean Relative Bias (MRB) 

The mean relative bias statistic was introduced by Daryll Hendricks in 1996. 
This statistic tries to capture the extent to which different VaR estimation 
methods generate estimates of similar average size. The mean relative bias for 
a portfolio is independent of the scale of the simulated portfolio because each 
of the daily relative bias calculations on which it is based is also scale depend­
ent. The formula is: 

Root Mean Squared Relative Bias (RMSRB) 

This criterion was also introduced by Hendricks12 in 1996 and is an exten­
sion of the Mean Relative Bias statistic. This statistic tries to capture the vari­
ability of the model's estimates. It examines the degree to which the risk mea­
sures tend to vary around the average risk measure. It is computed by taking 
the square root of the mean of the squares of the daily relative biases. The for­
mula for the Root Mean Squared Relative Bias statistic is: 

5. Empirical Results 

Tables 1 and 2 below report the proportion of failures of the VaR estima­
tion methods for each of the five indices for the 95% and 99% levels of confi­
dence, respectively. Examination of these two tables makes clear that in both 
levels of confidence Historical Simulation approach exhibits the lowest propor­
tion of failures in the sample for all five indices and the Variance Covariance 
follows it closely. The percentage of exceptions in Hybrid approach is con­
stantly higher than the other two. For the 95% level, Variance Covariance 
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figures are similar to those of Historical Simulation while for 99% level they 
are similar to the ones of hybrid approach. However the rate of exceptions in 
all three methods does not vary systematically. 

TABLE 1. 

Proportion of failures for 95% level of confidence 

Proportion of failures 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

vcv 
0.051087 

0.054884 

0.059027 

0.055230 

0.054194 

HS 

0.050742 

0.052123 

0.049707 

0.050742 

0.047981 

Hybrid 

0.061443 

0.063169 

0.066966 

0.063169 

0.061443 

Proportion of failures 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 

0.021056 

0.018295 

0.017259 

0.021056 

0.022782 

HS 

0.010356 

0.009320 

0.008630 

0.010701 

0.011046 

Hybrid 

0.023818 

0.030376 

0.030031 

0.027960 

0.025544 

TABLE 2. 

Proportion of failures for 99% level of confidence 

Tables 3 and 4 below present the Unconditional Coverage (LRU C) statistic 
for the 95% and 99% levels of confidence, respectively. Kupiec's likelihood ra­
tio tests the null hypothesis that the proportion of exceptions N/T is equal to 
the desired significance level. Under this null hypothesis the LRuc statistic has 
a Chi-square distribution with one degree of freedom. From the statistical ta­
bles of this distribution we obtain its critical values for the 1% and 5% signifi­
cance levels, which are χ0.01=6.6349 and χ0.05=3.84146 respectively. If the like­
lihood ratio exceeds the critical value than the null hypothesis can be rejected 
for the desired significance level. 

For the 5% level the null hypothesis can be rejected for hybrid approach for 
all the indices except for NIKKEI 500. For the same level the null hypothesis 
cannot be rejected for Historical Simulation (for all the indices). The hypothe­
sis holds also for the Variance Covariance method except in NIKKEI 500 
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where is rejected. Generally for this level Historical Simulation seems to pro­
vide the best unconditional coverage. For the 1% level the null hypothesis can 
be strongly rejected for both Variance Covariance and Hybrid approaches. 
Again Historical Simulation generates the best unconditional coverage, as the 
hypothesis is not rejected for any of the indices. 

TABLE 3. 

Unconditional Coverage for 95% level of confidence 

Unconditional Coverage 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
0.071617 

1.412218 

4.709232 

1.615580 

1.045502 

HS 

0.033436 

0.271249 

0.005260 

0.033436 

0.251934 

Hybrid 

7.467107 

9.797491 

1.559491 

9.797491 

7.467107 

Unconditional Coverage 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 

27.141841 

16.169199 

12.670801 

27.141841 

35.108175 

HS 

0.036564 

0.138460 

0.576243 

0.140474 

0.309608 

Hybrid 

40.264035 

78.712759 

76.460776 

63.456167 

49.445764 

TABLE 4. 

Unconditional Coverage for 99% level of confidence 

Tables 5 and 6 below present the Conditional Coverage or Independence 
(LRI) statistic for the 95% and 99% levels of confidence, respectively. 
Christoffersen's statistic for conditional coverage tests the null hypothesis that 
the sequence of VaR exceptions is independent (exceptions are serially 
uncorrelated). Under this hypothesis the independent likelihood ratio has also 
a Chi-squared distribution with one degree of freedom. Thus the critical values 
are the same as in the unconditional coverage. That is χ0.01= 6.6349 and 
χ0.05=3.84146 for 1% and 5% significance level, respectively. 

For the 5% level the null hypothesis holds for al three methods for the S&P 
500, UK and US Government Bonds. However for FTSE ALL SHARE the hy­
pothesis can be rejected for the Variance Covariance and Historical Simula­
tion approaches. For NIKKEI 500 it can be marginally rejected for the Hybrid 
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approach, as the LRI is very close to the critical value χ0.05, but holds for the 
other two. The conditional coverage of the three methods varies across the in­
dices. For the 1% level the null hypothesis holds for all the VaR approaches 
and Variance covariance seems to out perform the other two. 

TABLE 5. 

Independence for 95% level of confidence 

Independence 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
0.062797 

6.740856 

2.917809 

2.536382 

0148127 

HS 

0.337204 

5.529450 

0.224865 

0.546555 

0.239264 

Hybrid 

0.137770 

0.462945 

3.985477 

0.055021 

1.096008 

Independence 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 

0.062919 

0.016509 

1.127697 

0.043859 

0.164703 

HS 

0.896707 

1.191926 

1.547100 

0.810118 

0.728966 

Hybrid 

0.265732 

5.213647 

0.607924 

2.590804 

0.040515 

TABLE 6. 

Independence for 99% level of confidence 

Tables 7 and 8 below present the Correct Conditional Coverage (LRC C) 
statistic for the 95% and 99% levels of confidence, respectively. This likelihood 
ratio tests both the independence of exceptions and the correct coverage. It is a 
mixed test of these two hypotheses. The distribution of LRcc test is asymptoti­
cally Chi-square with two degrees of freedom. The critical values at the 1% 
and 5% level are χ0.01=9.21034 and χο.ο5=5.9914, respectively. Just like the two 
previous tests if LRCC for the desired significance level is lower than the criti­
cal value, the hypothesis can be accepted. 

For the 5% level Historical Simulation produces the best correct condi­
tional coverage, as the null hypothesis can be accepted in all five return series. 
The hypothesis holds also for the Variance Covariance approach except in 
FTSE ALL SHARE and NIKKEI 500 where it can be rejected. Hybrid method 
only makes it acceptable for the NIKKEI 500 and S&P 500. For the 1% level 
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the null hypothesis can be strongly rejected for the Variance Covariance and 
Hybrid methods in all five indices while it holds everywhere for Historical Sim­
ulation. 

TABLE 7. 

Correct Conditional Coverage for 95% level of confidence 

Correct Coverage 
S&P 500 
FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 
USA GOV. BONDS 

0.134414 

8.153074 

7.627041 

4.151962 

1.193628 

HS 
0.370640 

5.800699 

0.230125 

0.579991 

0.491198 

Hybrid 
7.604877 

10.260436 

5.544968 

9.852512 

8.563115 

Correct Coverage 
S&P 500 
FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
27.204760 

16.185708 
13.798499 

27.185700 

35.272878 

HS 
0.933271 

1.330385 

2.123343 

0.950591 

1.038574 

Hybrid 
40.529766 

83.926406 

77.068699 

66.046971 

49.405250 

TABLE 8. 

Correct Conditional Coverage for 99% level of confidence 

Tables 9 and 10 below report Lopez' magnitude of exceptions statistic for 
95% and 99% level of confidence, respectively. The score, which is imposed on 
the exceptions, increases together with the magnitude and thus can provide in­
formation for the lower tail of the distribution of returns. We compare the 
number of exceptions (that incorporate the magnitude term) in order to decide 
which of the three alternative VaR approaches is more accurate. That is, the 
approach with the lowest score is more accurate than the others. In both 1% 
and 5% levels Historical Simulation out performs the other two methods by 
achieving the lowest score of exceptions. On the other hand Hybrid exhibits 
the higher score. However it is worth noticing that in 5% level the differences 
are not so large as in 1% level. 
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TABLE 9. 

Magnitude of exceptions for 95% level of confidence 

Magnitude of exceptions 

S&P 500 
FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
148.019984 

159.007066 
171.022432 

160.003577 

157.009187 

HS 
147.019852 

151.006549 

144.017575 

147.003233 

139.007989 

Hybrid 

178.020315 
183.007261 

194.023850 

183.003530 

178.011529 

Magnitude of exceptions 

S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
61.009774 

53.002351 

50.008293 

61.001320 

66.003538 

HS 

30.005128 

27.001624 

25.004837 

31.000656 

32.001433 

Hybrid 

69.010792 

88.004649 

87.012553 
81.001701 

74.004709 

TABLE 10. 

Magnitude of exceptions for 99% level of confidence 

Tables 11 and 12 below report the Mean Relative Bias statistic for 95% and 
99% confidence levels, respectively. This statistic is a measure of size for each 
VaR approach and it is expressed in percentage terms. For example the mean 
relative bias of a VaR estimation method is 0.20. This means that this method 
is 20% larger than the average of all three approaches. The MRB results for 
the 95% level of confidence indicate that the differences between the average 
sizes of the different VaR forecasts of the three approaches are not large. The 
estimates of all methods vary around the mean at a maximum of 3.7% (Hybrid 
for FTSE ALL SHARE) except in one occasion where Historical Simulation 
estimates are 5.68% larger than the average. For the 99% level of confidence 
the differences are slightly larger. The results for the size of the VaR measures 
are similar to those of 95% level. In both levels Variance Covariance seems to 
produce the smallest risk measures in most of the indices in contrast to Histori­
cal Simulation that generates the largest. Finally, Historical Simulation esti­
mates are constantly larger than the average whereas Hybrid approach esti­
mates are constantly smaller. 
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TABLE 11. 

Mean Relative Bias for 95% level of confidence 

MRB 
S&P 500 
FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
0.010779 

0.017961 

-0.022338 

-0.010677 

-0.021280 

HS 
0.011069 

0.018978 

0.056808 

0.025769 

0.029687 

Hybrid 
-0.021848 
-0.036939 

-0.034470 

-0.015092 

-0.008406 

MRB 
S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
-0.056752 

-0.012056 

-0.044791 

-0.065378 

-0.100333 

HS 

0.117750 

0.101040 

0.133331 

0.113905 

0.141079 

Hybrid 
-0.060998 

-0.088985 

-0.088540 

-0.048527 

-0.040746 

TABLE 12. 

Mean Relative Bias for 99% level of confidence 

Tables 13 and 14 below report the Root Mean Squared Relative Bias statis­
tic for 95% and 99% confidence levels, respectively. This test examines the de­
gree to which the different risk measures tend to vary around the average risk 
measure. For 95% level of confidence the results vary. First, the risk measures 
produced by Hybrid method deviate most of the mean in all indices. For the 
S&P and FTSE ALL SHARE Variance Covariance estimates deviate more 
than those of Historical Simulation while for NIKKEI 500, UK Government 
Bonds and USA Government Bonds do not. For the 99% level Variance 
Covariance method produces the risk measure, which is the closest to the aver­
age of all three approaches for all indices, in contrast to Hybrid, which pro­
duces the furthest (except in USA Government Bonds where Historical Simu­
lation deviates most). 
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TABLE 13. 

Root Mean Squared Relative Bias for 95% level of confidence 

RMSRB 
S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 
0.089278 

0.089331 

0.078191 

0.093015 

0.088611 

HS 
0.088996 

0.084486 

0.099702 

0.096805 

0.097226 

Hybrid 
0.174621 

0.167961 

0.158504 

0.182552 

0.173688 

RMSRB 
S&P 500 

FTSE ALL SHARE 

NIKKEI 500 

UK GOV. BONDS 

USA GOV. BONDS 

VCV 

0.108577 

0.081859 

0.090815 

0.109101 

0.124966 

HS 
0.162742 

0.135692 

0.164807 

0.154623 

0.169792 

Hybrid 
0.197219 

0.191474 

0.177356 

0.190427 

0.164649 

TABLE 14. 

Root Mean Squared Relative Bias for 99% level of confidence 

6. Conclusion 

VaR forecasts are of great importance for financial and risk management. 
The relative literature includes a variety of different methods. In this study we 
employ a broadly used forecasting methodology, the EWMA model. We use 
this method in combination with three different VaR estimation approaches 
and generate three different types of daily VaR forecasts based on each indi­
vidual underlying approach for three equity and two bond portfolios. The aim 
of this study is to evaluate the forecasting performance of these methods and 
to determine which of them produces the best forecasts. In the evaluation pro­
cedure we use a number of back testing techniques that attempt to capture the 
accuracy and the variability of VaR estimates. 

The tests that aim to evaluate the accuracy of VaR forecasts indicate that 
Historical Simulation generate the most accurate forecasts. Specifically, His­
torical Simulation exhibits the lowest proportion of failures and the lowest 
score of exceptions in Lopez' test. Additionally it produces the best uncondi­
tional and correct coverage. For the conditional coverage in 95% level of confi­
dence the results vary, while for 99% Variance Covariance produces the best 
coverage. Between Variance Covariance and Hybrid the first appears to per-
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form slightly better. The tests for the variability of VaR forecasts indicate that 
the differences between the average sizes of the different VaR estimates are 
not large for both 95% and 99% percent levels of confidence. However, Hy­
brid and Variance Covariance (in most cases) tend to produce estimates 
smaller than the average of all three methods while Historical Simulation pro­
duces constantly higher estimates. It is important to note that this is also the 
case even when confidence level varies, as they can have an effect on the per­
formance of different VaR approaches. 

Finally, this study considers three alternative approaches of estimating VaR 
and some of the tests that can verify their accuracy. They have been examined 
and evaluated separately and conclusions have been drawn as to the one which 
individual produces the best estimates. An interesting subject for further exam­
ination would be the investigation of combined approaches and how the accu­
racy of the estimates compares to those currently evaluated at an individual 
level in this study. 
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