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Abstract

When a unit root test is applied to an ARIMA(0, 1, 1) process with large and moderate values
of the moving average parameter serious size distortions will appear. Contrary, the test has almost
no power if it is implemented to an AR(1) process with large and moderate values of the
autoregressive parameter. This study investigates the possibility of determining the order of
differencing and the true generating model for these two simple processes using the AIC and the
SBC information criteria and it finds that the use of these criteria will assist the analyst to
successfully determine the order of differencing and the true model. JEL Classification: C12; C22.

Keywords: Unit root test, stationary and non-stationary processes, information criteria

1. Introduction

The determination as to whether or not a series should be differenced is
known as the unit root test and in the last few years a large volume of
theoretical and empirical work has been appeared in the economic literature
dealing with this issue. Actually, the presence of such a root does not only have
consequences for the asymptotic distributions of the estimators and test
statistics, but also it affects the possibility of modeling correctly economic
relationships among time series (see, for example, Granger and Newbold
(1974), Engle and Granger (1987), Park and Phillips (1988, 1989), Sims, Stock
and Watson (1990) and Johansen (1991)).

This paper examines the performance of the AIC and SBC information

* T would like to thank Paul Newbold for his useful comments.
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criteria in terms of selecting the order of differencing and the true generating
model for series generated by the ARIMA(O, 1, 1) process, where the null
hypothesis of a unit autoregressive root is true, and by the AR(1) process,
where the null is false. These two processes have been repeatedly used in the
literature to investigate the performance of unit root tests.

2. The choice of differencing

In practice, it is quite difficult to determine an appropriate value for the
difference parameter. Part of this problem is based on the fact that the
autoregressive polynomial may have roots that are close to one. In this case, the
“augmented” Dickey-Fuller test, known as the ADF test, will fail to successfully
determine the appropriate value of the difference parameter. Moreover, as
reported, simulation evidence indicates that the ADF test has unsatisfactory
performance for moderately large samples even for the simplest possible model
with one moving average parameter, the ARIMA(0, 1, 1) process:

X, —-X,_ =¢-06¢ 0
for which the unit root hypothesis is true for all values of 6 strictly less than one
(see, for example, Schwert (1989), Agiakloglou and Newbold (1992), Hall
(1994) and Ng and Perron (1995)). In fact, the performance of the ADF test is
strongly affected not only by the order of the approximating autoregression, but
also by the value of the moving average parameter. For small and moderate
values of 6 the test performs well, whereas for large values of 6 the empirical
significance levels are grossly inflated. The test improves its performance for
all values of @ as long as a large order of the approximating autoregression is
selected for the implementation of the ADF test, but the power of the test will
be very low against simple alternatives. The trade-off between size distortions
and power loss of the ADF test is discussed in Agiakloglou and Newbold
(1996), whereas a recent work by Ng and Perron (2001) is made to alleviate the

size distortions of unit root tests.

In fact, the issue of identifying the presence of a unit autoregressive root of
a single time series may not always be the main concern in time series analysis.
A good example is the case of short-term forecasting following the
methodology of Box and Jenkins (1976) and this is true simply because
competing models will generate similar, if not identical, forecasts. To illustrate,
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consider two simple competing models, i.e., the random walk process without
drift:

(1-B)X, =¢, (2)
and the first-order autoregressive process with mean:

(1_(PB)(X1_#):5, (3)

If the value of the autoregressive parameter is close to one the stationary
AR(1) process (3) will look very similar to a non-stationary random walk process
(2) and similar forecast will be generated by both processes. However, this
particular case, which tends to appear very often in practice, has totally different
behavior towards testing. The null hypothesis of a unit autoregressive root will
not be rejected very frequently when the value of @ is close to one, whereas at
the same time the power of a test will of course be very low. The test will have
high power only when ¢ is zero, i.e., the generating process is white noise.

Broadly speaking, any stationary model with d = 0 is arbitrary close to some
other non-stationary model with d = 1. Thus, selecting a specific model from
a general class of ARIMA models can be easily implemented given the
available computing power and the fact that several different models can be
casily estimated. The choice of the best-fitted model can be obtained through
an order selection criterion such as the Akaike Information Criterion, known
as AIC:

AIC=In6>+2k/n 4)
and the Schwarz Bayesian Criterion, known as SBC:
SBC =In&* +kln(n)/n (5)

where k is the number of parameters, n is the number of observations of

residuals and &> is the estimated error variance, uncorrected for degrees of
freedom.
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The two information criteria measure how well the model fits the series
taking into account that a more elaborate model is expected to fit the series
better. The model with the lowest AIC or SBC is the best. When the interest is
in short-term forecasting, the principle of parsimony, i.e., the model used should
require the smallest possible number of parameters that will adequate represent
the data, is a useful element in model selection.

Therefore, given the fact that the unit root test has unsatisfactory
performance even for simple models, it is interesting to investigate whether or
not the two information criteria will substantially assist an analyst to determine
correctly the value of the difference parameter and the true generating process.
It should be emphasized, however, that the objective of this paper is not to
examine the finite sample performance of these ‘information criteria, but to

investigate their efficiency in terms of selecting the true order in licu of the

existing unit root testing procedures.

3. Monte Carlo Study

Consider the ARIMA (0, 1, 1) model where the null hypothesis of a unit
autoregressive root is true. Series of 101 observations are generated of model
(1) for Xo = 0 and for values of the moving average parameter equal to 0.9, 0.8,
0.6, 0.4 and 0.2. Next, ARIMA (p, 1, g) with no constant and ARIMA (p, 0, q)
with constant models are fitted for all possible combinations of p <2 and g <2,
where the first observation of the undifferenced series is deleted to ensure

comparability.!
In both cases, estimation was through maximum likelihood using SPSS and

the best-fitted model was selected according to the minimum value of the AIC
and the SBC criteria. The results of this simulation process are reported in

Table 1.

The decision to estimate only 16 different models is based primarily on the
principle of parsimony, i.e., a small model is always preferable to a large one.
This will also eliminate the possibility of having a large model been selected by
AIC, since it is known that AIC has the tendency to select a more elaborate
model, Moreover, dealing with only 16 models it will be relatively easy to

deeply analyze the results and draw general conclusions.



TABLE 1

Number of order and model selection in 1,000 trials
for series of 100 observations generated by ARIMA(0, 1, 1) models

Order Selection True Model Selection Mean Common
d=1 Estimate Models
Known order Unknown order BEL
d=1 d=1lord=0
o AIC | SBC | AIC | SBC | AIC | SBC
0.9 389 649 715 956 274 629 0.9141 500
(274)
0.8 639 873 716 937 474 832 0.8116 588
(474)
0.6 811 969 658 911 540 888 0.6030 619
(540)
0.4 859 965 535 735 470 716 0.4017 678
(470)
0.2 861 944 382 575 345 546 0.2075 861
(345)

Note: Numbers in parenthesis are the number of times that the true generating model is selected
by both criteria.

The issue of determining the right order using information criteria does not
seem to exist even for large values of the moving average parameter, although
this cannot be seen directly from Table 1. For example, for 6 = 0.9, which is
the most interesting case, since the unit root test has large size distortions, SBC
will select a non-stationary model 649 times out of which 629 times will be the
true model. Tt will also select 180 times the AR(1) model and 135 times the
MA(1) model as the second and third best-fitted models respectively. Among
those 180 AR(1) models, only 30 had statistically significant estimates of a
small value of the autoregressive parameter and among 135 MA(1) models,
only 20 had statistically significant estimates of the moving average estimates.
Thus, SBC chooses almost with certainty not only the right order of
differencing, but also the true generating process. Contrary, general remarks
for & = 0.9 cannot be made for AIC, since the diversification of model selection
is relatively high. The truth is that AIC selects a non-stationary model 389
times, almost 60% less than SBC, and 274 times the true model.

Similar conclusions for the selection of the order of differencing and the
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true model can be made for values of 6 = 0.8 and 0.6. Both information criteria
improve their performance in terms of selecting directly more often the true
model as the best-fitted model. For example, for 6 = 0.6 the true model is
selected 888 and 540 times by SBC and AIC respectively. However, for small
values of the moving average parameter, although both criteria select the right
order very frequently, it is difficult to believe that they will also select that often
the true model. For example, for & = 0.2 SBC selects 546 times the true
ARIMA(0, 1, 1) model as the best-fitted model, 357 times the ARIMA(1, 1, 0)
model as the second best-fitted model and 53 times the ARIMAC(1, 0, 0) model
as the third-best fitted model. Among 357 ARIMAC(1, 1, 0) models, 201 had
statistically significant estimates with a small negative value of the
autoregressive parameter and all 53 ARIMA(1, 0, 0) models had statistically

significant estimates of the autoregressive parameter with very large values
close enough to one.

In general, for all values of the moving average parameter SBC selects more
frequently than AIC a model withd = 1. This statement is also true in the case
of determining the true generating model when the order of differencing is
known (or even unknown), i.e., ford =1 SBC selects the true model as high as
956 and 937 times for 6 = 0.9 and 0.8 respectively. However, this number
decreases as the value of the moving average parameter decreases, indicating
that for small values of 6 it will be less likely to select the true model, even when

the order of differencing is known.

Consider next the AR(1) process where the null hypothesis of a unit root is
false for all values of the autoregressive parameter strictly less than one. Series
of 101 observations are generated of model (3) for Xo = 0, # = 0 and for values
of the autoregressive parameter equal to 0.95, 0.9, 0.8, 0.5 and 0.2. Following
the same methodology, Table 2 reports the simulation results for this series.
Unlike the previous €ase, AIC selects more often than SBC a stationary process
for all values of the autoregressive parameter. However, when the order is
known, i.e.,d = 0, SBC selects more often than A/C the true AR(1) model. It

or very large values of the autoregressive parameter,

is interesting to note that f '
SBC, in contrast to AIC, selects the true model almost with certainty. i.e., 946

and 940 times for ¢ = 0.95 and 0.9 respectively.
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TABLE 2

Number of order and model selection in 1,000 trials
for series of 100 observations generated by ARIMA(1, 0, 0) models

Order Selection True Model Selection Mean Common
d=0 Estimate Models
@ of @
Known order Unknown order
d=0 d=0ord=1
AIC SBC AIC SBC AIC SBC
0.95 363 161 654 946 235 154 0.9102 492
(105)
0.9 671 455 644 940 433 433 0.8625 481
(300)
0.8 912 693 642 928 602 647 0.7657 543
(463)
0.5 981 970 569 795 557 773 0.4739 7157
i (556)
0.2 804 748 314 472 259 354 0.1812 692
(251)

Note: Numbers in parenthesis arc the number of times that the true generating model is selected
by both criteria.

The performance of SBC remains satisfactory even in this case of selecting
the right model when the order is not known, although this cannot be seen
directly from Table 2. For example, for ¢ = 0.95, a case in which the unit root
test will have no power, SBC selects a stationary model 161 times, at which 154
times is the true model. Even though this number is indeed very small, careful
examination of the simulation results will lead us to the right model. First, it
should be pointed out that only for this case the AR(1) model is not selected by
SBC as the best-fitted model, but as the third one. Actually, SBC picks 458
times the ARIMA (0, 1, 1) model as the best-fitted model and 318 times the
ARIMA (1, 1, 0) model as the second best-fitted model. Among those 458
ARIMA (0, 1, 1) models only 48 had statistically significant estimates of a
moving average parameter with a small value and among those 318 ARIMA (1,
1, 0) models only 22 had statistically significant estimates of a very small value
of the autoregressive parameter. Thus, even in this extreme case SBC will
select the right model. However, as in the case of the ARIMA (0, 1, 1) process
with large value of the moving average parameter, general remarks cannot be
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easily made using the AIC criterion. The truth is that AIC picks the AR(1)
model as the best-fitted model 235 times, the ARIMA (0, 1, 1) model as the
second best-fitted model 189 times and the ARIMA (1, 1, 0) model as the third

best-fitted model 145 times.

For large and moderate values of the autoregressive parameter both
information criteria and especially SBC will lead us to the right model fairly
casier than the previous extreme Casc. For example, for ¢ = 0.9 SBC selects
433 times the AR(1) model as the best —fitted model, 311 times the ARIMA (0,
1, 1) model, where 55 of them had statistically significant estimates and 180
times the ARIMA (1, 1, 0) model, where only 17 of them had significant
estimates. However, for small values of the autoregressive parameter this
statement cannot be supported. For ¢ = 0.2 for'example both criteria select
the AR(1), the MA(1) and the ARIMA (0, 1, 1) model as first, second and third
best-fitted model. Excluding the case of the ARIMA (0, 1, 1) model in which
the estimates of the moving average parameter were very close to one
indicating over differencing, several of the selected MA(1) models had
statistically significant estimates of small, in absolute terms, values of the
moving average parameter. Thus, among those 334 MA(1) models selected by
SBC 187 had significant estimates, meaning that overall an AR(1) process with
a small value of the autoregressive parameter will have approximately 80%

chances to be selected.

4. Conclusion

This study illustrates that the use of the information criteria will assist the
analyst to successfully determine the order of differencing and the true
generating process of any given time series. Moreover, this methodology
should be applied in practice using a larger combination of autoregressive and
moving average parameters, say, for example, for all possible combinations of
p + q <5, so0 that to allow the possibility of having a large model been selected

by AIC.
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