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Abstract

In an earlier paper we showed that the Nash Bargaining solution for 2-player demand games can be
obtained as a non-cooperative solution if each player assumes a uniform density over the choices of his
opponent. In this paper we investigate the possibility of recapturing the Harsanyi-Nash bargaining
solution for N-player games through an extension of the uniform density argument. We show that for
certain games a direct generalization is possible. Also, in all games, the Harsanyi-Nash solution is
obtained if each player bargains separately with every other player and ascribes a uniform density over his

opponent's choices. (JEL subject code: C7)

1. Introduction

In Glycopantis and Muir (1994) it was shown that the renowned Nash
bargaining solution, (Nash (1950, 1953)), for 2-player demand games can be
recaptured as a non-cooperative solution if each player assumes a uniform den-
sity for the choices of the other player and then demands the quantity which
maximizes his expected surplus utility payoff. The intuitive justification of this
approach is that the players apply the principle of insufficient reason (Luce and
Raiffa (1957)). Namely in the absence of any information apart from the set of
possibilities a natural way to proceed to reach a decision is by assuming all
choices of one's opponent to be equally likely. It is also reasonable to assume
equally likely choices if the calculations required to establish exactly how one's
opponent will play are very involved and costly. The principle of insufficient
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reason is an idea from the area of bounded rationality, (Bimmore (1990), Kreps
(1990), and Simon (1987)), which in general describes ways in which a rational
choice should be made when the economic agents are constrained by the amount
of the information available and their computational abilities.

In an N-player demand game the players, PI, ..., PN, announce simultane-
ously and indepedently demands, in terms of utility, xi, ..., XN, respectively,
which are greater or equal to the corresponding status-quo payoffs, &, ..., &r-I/
the vector of demands, (xi, ..., X,), lies in the set of feasible payoffs, 5, which is
assumed to be convex and compact, then every player receives what he asked
for. If (xi,..., X\) @ 2 then the demands are incompatible and the players receive
their status-quo payoffs. The Nash equilibria are the set of the Pareto efficient
vectors (xi, ..., XN) with (xt, ..., Xy) > (&, ..., &) which, apart from very extreme
cases, contains uncountably many points. Therefore the concept of Nash equili-
brium, which is appropriate for non-cooperative games, leads to indeterminancy
rather than to a unique solution ofthe demand game. On the other hand, it gives
the set of payoffs over which the N players will negotiate. For 2-player games
Nash (1950, 1953) gave arguments why a particular Pareto efficient utility payoff
vector, the Nash bargaining solution which can be calculated easily, will be
chosen by rational players as the outcome of the cooperative demand game. In
Glycopantis and Muir (1994) the Nash bargaining solution was reviewed briefly,
as well as certain approaches in the literature which have been employed to
justify the Nash bargaining solution through non-cooperative games, and then
what can be called the uniform density approach was introduced.

In the present paper we investigate the possibility of obtaining the analogue
to the Nash bargaining solution for demand games with N players by extending
in an appropriate way to such games the uniform density approach. The
assumption is now that each player, in the absence of any specific information
about the behaviour of the other players or if the calculations required in order
to establish precisely how they will act are very involved and costly, will ascribe
to each of his opponents, either simultaneously and independently to all of them
or to one at a time, a uniform density over his choices.

Harsanyi (1977) has investigated bargaining games with N players. He
defines a multilateral bargaining equilibrium to be one that implies bilateral
bargaining equilibrium between any two players. He shows that such a solution
can also be obtained from the Nash axiomatic approach when the postulates are
taken to apply to N-player bargaining games.

As shown by Harsanyi (1977), the N-player bargaining game has as solution
that of



Problem 1
Maximize XiXz...XN
Subject to
g (X1, X2, o0, X)) =0
X1, X2, eeey Xn =0

where Xj is the utility payoffto Pi and g (xt, X2,..., X) = O is the boundary of the
convex set of feasible payoffs. The status-quo payoffs, following a normalization
of the utility functions of the players, are taken throughout this paper to be
equal to zero.

We shall refer to the solution to Problem 1 as the N-player Nash bargaining
solution or the Harsanyi-Nash bargaining solution. We consider here the possi-
bility of recapturing the Harsanyi-Nash bargaining solution by extending the
uniform density argument employed in Glycopantis and Muir (1994).

A number of economic problems will lead naturally to the formulation of
N-player demand games. As in the case of 2-player games, they are mainly in the
areas of labour and industrial economics. They could refer, for example, to
bargaining over wages and employment in a model with one employer and two
unions, with status-quo payoffs the minimum obtainable profit and utilities, or
to N oligopolists which form a cartel and wish to divide the resulting monopolis-
tic profits, with status-quo payoffs the profits corresponding to the Cournot-
Nash non-cooperative equilibrium.

For the symbolic problem of dividing a cake among N players the idea
applied in Glycopantis and Muir (1994) can be generalized in the following
sense. We assume that in making their calculations each player assigns an inde-
pendent uniform distribution to the choices of each ofthe N-1 other players and
that he chooses his own demand to maximize his expected payoff. We now show
that the result of this type of decision is the N-player Nash bargaining solution.

First the Harsanyi-Nash bargaining solution is obtained from solving

Problem 2
Maximize X;X;...Xx
Subject to

Xi+x+...+txn=1
XJ, X2 caay XN :_}0

which has answer x*, x>*, ..., xx* = 1/N.



Consider now the direct generalization of our probabilistic argument which
assumes that Pi assigns independent uniform distributions to the choices of all
other players. This means that every other player is assumed to choose inde-
pendently from [0, 1] with a uniform density d = 1 so that the joint density on
[0, 17Y"" is again uniformly equal to 1.

If Pl chooses xi, the probability that he will receive this payoff is the
probability that, when the demands of all players are announced, (xi, X2, ..., XN)
is in the feasible region, that is the probability that x; + x; + ... + xx =1. Since the
joint density for x2, ..., Xx is 1, the probability is the (N-1)-volume of {(xa, ...,
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XN): X2 + ...+ Xv = 1-x; and x= 0}, namely fn fo fu 1
anan-r...d}(z.

This integral can be calculated either directly, or through the argument
concerning volumes given in Section 2 below. It is equal to V(1-x:)*"' where V>0
is a factor independent of x,. Therefore the expected return to P1 is x; V(1-x,)~"
+0 [1-V(1-x,)"""] since his status-quo payoff is 0.

It follows that P1 solves

Problem 3
Maximize x; (1-x;)" "
Subject to x; €[0, 1]

as V is irrelevant for the maximization.

This again gives as solution x; = 1/N and since an idential argument can be
made for all players we obtain again the Harsanyi-Nash bargaining solution.

Next we discuss a class of games for which a direct generalization of the
probabilistic approach in Glycopantis and Muir (1994) gives the Harsanyi-Nash
bargaining solution.

2. The Uniform Density Approach for N-Player Games.

Consider the N-player bargaining games given by I = { (X1, X2, ..., XN):
N
> x" = 1 and x;=0 } where (a1, as, ..., ax) are constants such that all «=1 so
i=1
that the individual functions x;* are convex and the feasible set I is convex. For
example &; = | for all i gives the cake game and «; = 2 for all 1 gives a hypersphere
game.



The Harsanyi-Nash solution of such a game is that of
Problem 4

"
Maximize >, log x;

i1
Subject to (X1, X2, ..., Xx) € I
N

This has as Lagrangean function L = 3, [log xi - A (x," - (1/N)) ] and through

i=1

N
routine calculations we obtain the solution x* = [8; /| =, B;]* where 8 = 1/a.
=l

Next we show that the probabilistic argument of assigning by each player,
simultaneously and independently, a uniform density to the choices [0, 1] of each
one of his opponents results in the same solution. Take the point of view of P1.
He chooses some x; € [0, 1] and needs to know the probability of (xi, X2, ..., Xx)

N

€ ¥ given this x;, which is the (N-1)-volume of the region >, x*=<1-x%in I,
i=2

since the joint uniform density assigned by P! to the joint choices of P2, P3, ...,

PN is 1.

We insert a short digression on volumes. Suppose we have an object O in
R™. Its volume is given by Vol(O) =f 1dxidx;...dxn. Suppose now that two
objects O and O~ are related so that (21, X2, ooy X8) € O Mff (X1 [ 1, X2/ 2, oo,
X~/ pn) € O for pi, pa, ..., un > 0. Then

Vol (07) = pipa...um Vol (O). (1)

This is shown as follows. Take Vol(O") =f ldxidx»...dx~ and introduce
o

change of variables y; = xi/ ui. Then Vol(O") =f,u|,uz...u.w dyidysz...dyn = pipa... un
(8]
Vol(O) which proves the result.

Now we return to the N-player games we are considering and apply the
result immediately above. Let the region O = { (x2, ..., Xn): i, x* = 1 and x=0}
i=2
have volume V and consider O "= { (x3, ..., Xn): i %" = A and x=0 }. This region
1=2
is of course identical to that given by {(xa, ..., Xx): i (xi /AP)* < 1 and x= 0},
where Bi = 1/ai, and employing the result in (1) wli_tzh wi=AP i=2 ... N, we



N
(= %)
obtain Vol(O")=A ™ V. Therefore the probability of (x1, X2, ..., Xx) G X, given
X1, is Vol(O ") with A= 1-x,"', since the joint uniform density assigned by P1 to
the joint choices of the other players is 1, so the expected return to P1 from

)

choosing x; is x; (1-x,") ™% V.

Obviously in the problem of dividing a cake among N players all ai’s and
Bi’s are equal to 1 and the (N - 1)-volume of the feasible set {(x2, ..., Xn): X2 + ... +
+xx= 1-x; and x=0} is V(I - x,)""" as stated in Section 1, where V is volume of
{(x2, .-.; XN): X2 + ... + xy=I and x=0}.

Since in the games above V is merely a numerical factor independent of x,,
P1 must obtain the solution of

Problem 5 N
(3 #)
Maximize x; (1 - x;*")
x; € [0, 1] N
which on routine calculations is shown to have solution x; = [8;/ 2, B;]f<I.
i
An identical argument can be made for all players and we obtain again the

™
Harsanyi-Nash bargaining solution x* = [/ >, 8]°.
I
By an analogous argument the class of N-player games for which the
Harsanyi-Nash bargaining solution can be justified through the uniform density

approach can be extended to I = { (xi, X2, ..., Xn): S cix® < ¢ and x=0} where all

¢i’s and ¢ are positive constants and =1 for all i.

However the probabilistic approach described above and the Harsanyi-
Nash solution do not always match up as the following example shows.

We consider the 3-player demand game the feasible payoffs set of which is
given by the expression -log (1-x;) -log (1-x2) - log (1-x3) = log e = 1 with 0=x, xa,
xi<l-e '.

Alternatively, we can write the feasible set as (1-x;) ' (I-x2) ' (1-x3) ' <e with
0=x,, X2, xs=I-e . Therefore the equation of the boundary of the feasible



payoffs set can be given in the implicit form g(x1, x2, x3) = (I-x1) ' (1-x2) ' (I-x3) '
- e = 0 from which we obtain x; = f'(x2, x3) = 1 - (1-x2) ' (1-x3) ", x2 = £ (x4, x3) =
=1-¢'(1-x) " (-x3)",and x3 = P(xi, x2) = 1 - (Ix1) ' (1-x2) .

We prove the convexity of the feasible set, I, or equivalently the concavity
of the boundary, Pareto efficient, surface x5 = £ (xi, x2) = 1 -e ' (1-x;) ' (1-x2) " as
follows.

Consider (x/, X2, x3) and (x1”, X2", x3”) € L. Since -log (1-x) is strictly
convex, we have, for 0=A=I,
-log (1 - (Axy + (1-A)x1")) - log (1 - (Ax2 + (1-A)x2")) - log (1 - (Ax3 + (I-A)xa"))=
- Mog (1-x1) - (1-A) log (1-x1") - Alog (1-x7) - (1-A) log (1-x2") - Alog (1-x7) -
(1-A) log (1-x3") = log €. (2)

Therefore (Axy + (I-A)x1”), (Ax2 + (1-A)x2"), (Axs + (1-A)x3")  I. hence I is
convex and the boundary surface is concave.

First we obtain, for the game above the Harsanyi-Nash bargaining solution.
It is the solution of

Problem 6
Maximize X;X2X3
Subject to

-x)"(1-x)" (1-x)"<e
0£X|,X2,X3£l-e I.

In view of the symmetry of both the objective function and the constraint in all
the variables we get X1 *=x,*=x3*=1 - ¢~ a,

Next we calculate the demands of the players following the uniform density
approach for 3 players. We consider P1. He ascribes over the choices, [0, 1 -¢ '],
of each of the other players the uniform density e/(e - 1). Therefore he ascribes
uniform density e’ / (e - 1)* to the choice pairs in [0, 1-e 'T*.

Now if P1 decides to demand x; he will receive x; with probability m,(x,),
which is the measure of the feasible subset Si(x1) = { (x3, X3): g(X1, X2, X3) <0 }, and
0, his status-quo payoff, with probability 1 - mi(x:). Therefore he wants to
choose x; to maximize his expected peyoff E\(x;) = x;m;(x,).

In view of the uniform density fact we write
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Ei (x1) =[€* / (e - )] xi Au(x1) 3

where A(x;) denotes the area of Si(xi).

\
He!

Bsh

point

Graph 1

In the graph above A, is the number that is assigned to the shaded set,
obtained from the feasible region for a specific x;. The picture helps to explain
the calculations below.

Following the graph we see that, given x;, we want to integrate x; = f* (X1, X2)
over the interval [0, x; = £ (x1, 0)]. Therefore we have
e '(1x) '

Ax)= [ {1 (xa) ' (1x1) 'Jdxe = [xa + € (1-x)) ™ log(1-xz) e 00" (4)
Perfoc;'ming the integration in (4) we obtain
Ai(xi) = 1 (I-x)) " - e (1-x1)™ (log (1-x1) + 1) (5
and employing (5) we wish to maximize the expected payoff to P1, given by
Ei(x1)= ez(e-l)'le Ai(x)) = ez(e-l)_z(xl-Zx;e_' (l-x.)_1 = xie ! (l'Xl)_] log (1-x1)) (6)
over [0, 1-e '].

Equivalently we wish to maximize

K(x1) = ex1 - 2x1 (1-x1) " - x3 (1-x1)”" log (1-x1). (7)
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Calculating the derivatives we obtain

K (x1) = e-2(1-x))" - xi(1-x1)* - (1-x1) " log (1-x1) - xi(1-x1) log(1-x1) (8)
and

K(x1) = - 2(1-x1) 2 - xa(1-x1) " - 2(1-x1) * log(1-x1) - 2x:(1-x1) * log(1-x1). (9)

Multiplying K”(x:) by (1-x;)’ we see that in [0, 1-e '] it has the same sign as
G(x1) = -2 + X1 - 2log (1-x,), which is originally negative and then positive. Hence
the function K(x) is originally concave and then convex. Since K'(I1-¢ ") >0
and K”(1-e') <0, at the point 1-'* the function K(x;) is still concave and

ok . B -1/3
rising and therefore its maximum occurs at a value greater than 1-¢ .

Now because of the symmetry of the players’ problems each demands a
quantity larger than 1-¢ ", his share in the Harsanyi-Nash bargaining solution,
and the vector of demands lies outside the set of feasible payoffs. Therefore the
players end up with their status-quo payoff which is 0.

The above example shows that a direct generalization of the uniform den-
sity approach for the 2-player games to the N-player games will, in general, not
confirm the Harsanyi-Nash bargaining solution. On the other hand, as shown
below, a generalization, based on a bounded rationality approach, is obtained in
a pairwise decentralization of the game.

3. A Generalization of the Probabilistic Approach

The Harsanyi-Nash bargaining solution can be obtained through the pro-
babilistic (uniform density) approach, by alowing any pair to calculate first
their demands conditional on the N-2 players having fixed quantities allocated
to them. The assumption is now that each player is only able to handle 2-player
games and makes al possible calculations before he announces his demand.
There is an affinity here between this approach and the requirement by Harsanyi
that a multilateral bargaining equilibrium should be such that it implies bilateral
equilibrium between any two players.

As in Glycopantis and Muir (1994), the principle of insufficient reason,
which falls within the area of bounded rationality, operates when, in the pairwise
decentralized games, each player assigns a uniform density over the possible
choices of the remaining player whose alocation is also not fixed. The rational-
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ity of the players is also bounded in assuming that they can only do their
calculations when they are playing against only one more player.

Each player, say Pi, reasons completely separately. He knows that he must
announce a demand, which is a number, and that his bounded rationality allows
him to handle only 2-player games. He assumes that N-2 players take definite
amounts and he is then left to play a 2-player game with the remaining player,
say Pj.

The fact that N-2 demands are fixed in g(Xi, X2, o5 Xiy vy Xjp ooey Xn)= 0
implies that Pi and Pj play a game with negotation set, say, G(x;, x)<0. Pi
assumes a uniform density over the choices of Pj, that is over [0, xj] where X}
solves G(0, xj) = 0. In relation to the original game this is a uniform density
conditional on the assumed N-2 quantities.

Maximizing his expected payoff as in Glycopantis and Muir (1994), Pi
calculates his demand as a function of the N-2 quantities assumed to be fixed.
We call this a reaction function and its derivation is part of the thought process
that leads to the calculation of the demand that the player will announce.

Since there are N-1 ways of choosing the N-2 players, or, equivalently, the
remaining player, Pi calculates N-1 reaction functions. Each reaction function
can be placed on the boundary of 1, calculating the missing coordinate from
g(x1, Xz, ..., Xn) = 0 by inserting the values of the N-2 variables and the implied
value for x.

As it will be argued below, the reaction functions of Pi intersect on the
boundary of ¥ at a single point (x,, x,", ..., Xy ). This is the only point that has
the property that, given any N-2 of these demands, playing the game with the
remaining player implies x,".

From the point of view of Pi, the announcement X* is the only demand for
which there exists an efficient vector such that x™ is the outcome of the uniform
density approach to the pairwise games which form when the demands of any of
the remaining players are given. It is therefore only rational that Pi will
announce x* as any other announcement will imply that, no matter what the
other players have demanded, in at least one pairwise game he should have
asked for a different quantity.

We shall now show that the reaction functions of Pi on the boundary of 5
intersect at a single point. Indeed we shall show that they intersect at the unique
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Harsanyi-Nash point (x1*, x2¥, ..., xn*). It follows, since each Pi reasons in the
same manner, that each player will demand his Harsanyi-Nash allocation.

Consider, for example, P1 and assume that the demands of P3, P4, ..., PN
are fixed at x5, X4, ..., X~ respectively. He is imagining that he is playing a game
with P2, with feasible payoff region g(xi, X2, X5, X4, ..., X5’ ) =0 and status quo
payoffs (0, 0).

Let g(xi1, X2, X3, X4, ..., XN ) = 0 imply x> = f*(x1, X7, ..., X' ). P1 adopts the
uniform density approach and calculates x; which solves

Problem 7
Maximize x:f’(xi, X3, ..., X' ) /d
Subject to
xi &[0, x7']
where x7 solves g(xi, 0, x5, ..., x{) = 0 and d = (0, x5, ..., xv') gives P2’s

maximim possible demand in the conditional game.

From the problem above we obtain the reaction function x; = Xf’ (e
XN ) where the superscript denotes the player with whom P1 is negotiating. This
reaction function is then placed on the boundary of I by calculating x; from

g(X.2 (X3, ..y XN), X2, X3, ..., XN) =0 (10)

On the boundary of ¥, the reaction function traces Nash bargaining solu-
tions for games conditional on (X1, ..., xX). This follows from the fact (see also
Glycopantis and Muir (1994)) that P1’s demand is the same as the x, obtained
from the solution of

Problem 8 Problem 9

Maximize x;x2 or equivalenty Maximize X;x;

Subjecto to Subject to
X2 < (X1, X3, oey XN) 2(X1, X2, X3, ey XK)=0
X1 &[0, x7] X1, X2=0

and from the fact the Nash bargaining solution is always on the boundary of the
feasible payoff region.

It follows that when x; = X, (x7, ..., x%) is placed, through (10), on the
boundary of I it goes through the unique Harsanyi-Nash bargaining solution
(x1*, x2*, ..., Xxn*), and so do all such reaction functions of P1, as the Harsanyi-
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Nash solution implies the Nash bargaining solution for all pairwise decentralized
games.

The question arises whether they also intersect at any other point. However
this is impossible because at any such point we would have had the Nash bar-
gaining solution for al pairwise games involving P1, and this implies that the
necessary, first order, conditions for the unique Harsanyi-Nash solution are also
satisfied.

Therefore we have obtained a generalization of the probabilistic approach,
based on a bounded rationality argument, which offers a justification of the
Harsanyi-Nash bargaining solution.
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